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Abstract

We consider estimating a random vector from its noisy projections onto low-di-
mensional subspaces constituting a fusion frame. A fusion frame is a collection of
subspaces, for which the sum of the projection operators onto the subspaces is
bounded below and above by constant multiples of the identity operator. We first
determine the minimum mean-squared error (MSE) in linearly estimating the ran-
dom vector of interest from its fusion frame projections, in the presence of white
noise. We show that MSE assumes its minimum value when the fusion frame is tight.
We then analyze the robustness of the constructed linear minimum MSE (LMMSE)
estimator to erasures of the fusion frame subspaces. We prove that tight fusion
frames consisting of equi-dimensional subspaces have maximum robustness (in the
MSE sense) with respect to erasures of one subspace, and that the optimal sub-
space dimension depends on signal-to-noise ratio (SNR). We also prove that tight
fusion frames consisting of equi-dimensional subspaces with equal pairwise chordal
distances are most robust with respect to two and more subspace erasures. We call
such fusion frames equi-distance tight fusion frames, and prove that the chordal dis-
tance between subspaces in such fusion frames meets the so-called simplex bound,
and thereby establish connections between equi-distance tight fusion frames and op-
timal Grassmannian packings. Finally, we present several examples for construction
of equi-distance tight fusion frames.
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1 Introduction

The notion of a fusion frame (or frame of subspaces) was introduced by
Casazza and Kutyniok in [1] and further developed by Casazza et al. in [2].
A fusion frame for RM is a finite collection of subspaces {Wi}N

i=1 in RM such
that there exist constants 0 < A ≤ B < ∞ satisfying

A‖x‖2 ≤
N∑

i=1

‖Pix‖2 ≤ B‖x‖2, for any x ∈ RM ,

where Pi is the orthogonal projection onto Wi. Alternatively, {Wi}N
i=1 is a

fusion frame if and only if

A I ≤
N∑

i=1

Pi ≤ B I. (1)

The constants A and B are called (fusion) frame bounds. An important class
of fusion frames are tight fusion frames, for which A and B can be chosen to
be equal and

∑N
i=1 Pi = A I. We note that the definition given in [1] and [2]

for fusion frames apply to closed and weighted subspaces in any Hilbert space.
However, since the scope of this paper is limited to non-weighted subspaces in
RM , the definition of a fusion frame is only presented for this case.

A fusion frame can be viewed as a frame-like collection of low-dimensional
subspaces. In frame theory, an input signal is represented by a collection of
scalars, which measure the magnitudes of the projections of the signal onto
frame vectors, whereas in fusion frame theory an input signal is represented by
a collection of vectors, which are the projections of the signal onto the fusion
frame subspaces. Similar to frames, fusion frames can be used to provide a
redundant and non-unique representation of a signal. In fact, in many appli-
cations, where data has to be processed in a distributed manner by combining
several locally processed data vectors, fusion frames can provide a more natu-
ral mathematical framework than frames. A few examples of such applications
are as follows.

Distributed sensing: In distributed sensing, typically a large number of inex-
pensive sensors are deployed in an area to measure a physical quantity such

∗ Corresponding author
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as temperature, sound, vibration, pressure, etc., or to keep an area under
surveillance for target detection and tracking. Due to practical and economi-
cal factors, such as low communication bandwidth, limited signal processing
power, limited battery life, or the topology of the surveillance area, the sen-
sors are typically deployed in clusters, where each cluster includes a unit with
higher computational and transmission power for local data processing. Thus,
a typical large sensor network can be viewed as a redundant collection of sub-
networks forming a set of subspaces. The gathered subspace information is
submitted to a central processing station for joint processing. Some references
that consider fusion frames for distributed sensing are [3],[4], and [5].

Parallel Processing: If a frame system is simply too large to handle effectively
(from the numerical stand point), we can divide it into multiple small sub-
systems for simpler and parallel processing. By introducing redundancy, when
splitting the large system, we can introduce robustness against errors due to
failure of a subsystem. Fusion frames provide a natural framework for split-
ting a large frame system into smaller subsystems and then recombining the
subsystems.

Packet encoding: In digital media transmission, information bearing source
symbols are typically encoded into a number of packets and then transmit-
ted over a communication network, e.g., the internet. The transmitted packet
may be corrupted during the transmission or completely lost due to, for ex-
ample, buffer overflows. By introducing redundancy in encoding the symbols,
according to an error correcting scheme, we can increase the reliability of the
communication scheme. Fusion frames, as redundant collections of subspaces,
can be used to produce a redundant representation of a source symbol. In the
simplest form, we can think of each low-dimensional projection as a packet
that carries some new information about the symbol. At the destination the
packets can be decoded jointly to recover the transmitted symbol. The use of
fusion frames for packet encoding is considered in [6].

In this paper, we consider estimating a random vector from its noisy projec-
tions onto low-dimensional subspaces constituting a fusion frame. As far as
we know, optimal reconstruction of random vector signals from fusion frame
measurements (or even frame measurements) has not been considered before,
despite the fact that random vectors provide a natural way of modeling signals
in many applications, including distributed sensing.

The optimal reconstruction of a random signal is different from the canonical
reconstruction of a deterministic signal in a fusion frame that is considered in
[2]. The canonical reconstruction strategy of a deterministic signal x ∈ RM

from its fusion frame measurements involves using the fusion frame operator
Sx =

∑N
i=1 Pix, which is invertible and self-adjoint. The deterministic signal

x can then be recovered from its measurements {Pix}N
i=1 as x = S−1Sx =
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∑N
i=1 S−1Pix. However, this strategy is not optimal in the MSE sense if x is a

random vector.

When x is random, the (linear) strategy that achieves minimum MSE is linear
minimum mean-squared error (LMMSE) estimation or Wiener filtering, which
is well-known in the statistical signal processing literature (cf. [7, Ch.8]). We
use this strategy to estimate the random vector x – assuming that its covari-
ance matrix Rxx = E[xxT ] is nonsingular and known (but otherwise arbi-
trary) – from its noisy fusion frame projections. We determine the MSE in the
LMMSE estimation of x and show that the MSE assumes its minimum value
when the fusion frame is tight. Our analysis also clarifies the effect of additive
white noise on signal estimation in fusion frames, which has not been studied
before.

We then analyze the robustness of LMMSE estimators to erasures of the fusion
frame subspaces. Erasures of subspaces can occur due to many factors in
practice. In the distributed sensing example, a subspace erasure can occur due
to a faulty or out of battery cluster of sensors, or due to loss of data during
the transmission of local subspace information to the central processor. In
scenarios where one or more sensor clusters are believed to be out of range for
measuring the signal, or blocked by obstacles, their corresponding subspaces
can be discarded on purpose. In the parallel processing example, an erasure
can occur when a local processor crashes. In the packet encoding example, an
erasure can occur when buffers in the network overflow.

Constructing frames that allow for robust reconstruction of a deterministic
signal in the presence of frame element erasures has been considered by a
number of authors. In [8], Goyal et al. show that a normalized frame is op-
timally robust against noise and one erasure (erasure of one element of the
frame) if the frame is tight. Some ideas concerning multiple erasures were also
presented. The work of Casazza and Kovačević [9] focuses mainly on designing
frames, which maintain completeness under a particular number of erasures.
Holmes and Paulsen [10] and Bodmann and Paulsen [11] study the robust-
ness of frames under multiple erasures and show that maximal robustness
with respect to the worst-case (maximum) Euclidean reconstruction error is
achieved when the frame elements are equi-angular. The connection between
equi-angular frames and equi-angular lines has also been explored by Strohmer
and Heath in [12], where the so-called Grassmannian frames are introduced.

There are also a few papers that consider the construction of fusion frames
for robust reconstruction of deterministic signals in the presence of subspace
erasures. The main result in this context is due to Bodmann [6], who shows
that a tight fusion frame is optimally robust against one subspace erasure if
the dimensions of the subspaces are equal. He also proves that a tight fusion
frame is optimally robust against multiple erasures if the subspaces satisfy the
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so-called equi-isoclinic condition. The performance measure considered in [6] is
the worst-case (maximum) Euclidean reconstruction error. The equi-isoclinic
condition requires all pairs of subspaces to have the same set of principal an-
gles. This condition is very restrictive and there are only a few known examples
of fusion frames that satisfy this condition. The single erasure case discussed
in [6] has also been studied by Casazza and Kutyniok in [13]. We emphasize
that all the above work on robustness to erasures in frames and fusion frames
deals with the case where the signal of interest is deterministic.

In this paper, we analyze the effect of subspace erasures on the performance
of LMMSE estimators. We determine how the MSE of an LMMSE estimator,
constructed based on the second-order statistics of the data in the absence of
erasures, is affected by erasures. We limit our analysis to the case where the
signal covariance matrix Rxx is of the form Rxx = σ2

xI. The case of a general
Rxx is more involved and is outside the scope of this paper.

We prove that maximum robustness against one subspace erasure is achieved
when the fusion frame is tight and all subspaces have equal dimensions where
the optimal dimension depends on SNR. We also prove that a tight fusion
frame consisting of equi-dimensional subspaces with equal pairwise chordal
distances is maximally robust with respect to two and more subspace era-
sures. We call such fusion frames equi-distance tight fusion frames. We prove
that the pairwise chordal distances between the subspaces in equi-distance
tight fusion frames meet the so-called simplex bound, and thereby establish an
intriguing connection between the construction of such fusion frames and op-
timal Grassmannian packings (cf. the excellent survey by Conway et al. [14]).
This connection shows that optimal Grassmannian packings are fundamental
for signal processing applications where low-dimensional projections are used
for robust dimension reduction.

The paper is organized as follows. In Section 2, we derive the MSE in LMMSE
estimation of a random vector from its noisy fusion frame projections. In
Section 3, we analyze the robustness of LMMSE estimators to erasures of
fusion frame subspaces and derive conditions for the construction of maximally
robust fusion frames. Section 4 establishes a connection between equi-distance
tight fusion frames and optimal Grassmannian packings. In Section 5, we give
several examples for the construction of equi-distance tight fusion frames.
Conclusions are drawn in Section 6.

2 LMMSE Estimation from Fusion Frame Measurements

Let x ∈ RM be a zero-mean random vector with covariance matrix E[xxT ] =
Rxx, which we wish to estimate from N noisy measurement vectors in a fusion
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frame {Wi}N
i=1, with bounds A ≤ B, in the presence of noise. In other words,

we wish to estimate x from its noisy projections onto the subspaces {Wi}N
i=1.

We take the dimension of the ith fusion frame subspace Wi, i = 1, 2, . . . , N to
be mi.

Let zi ∈ RM , i = 1, . . . , N be the measurement vectors corresponding to
{Wi}N

i=1. The measurement model for the ith subspace Wi, i = 1, . . . , N is of
the form

zi = Pix + ni,

where Pi ∈ RM×M is the orthogonal projection matrix onto the mi-dimensio-
nal subspace Wi, and ni ∈ RM is the corresponding noise vector. Assume that
the noise vectors for different subspaces are mutually uncorrelated, and that
each noise vector is white with covariance matrix E[nin

T
i ] = σ2

nI, i = 1, . . . , N .
Further, assume that the signal vector x and the noise vectors ni, i = 1, . . . , N
are uncorrelated.

Further, define the composite measurement vector z ∈ RNM and the com-
posite projection matrix P ∈ RNM×M as z = (zT

1 zT
2 · · · zT

N)T and
P = (PT

1 PT
2 · · · PT

N)T . Then, the composite covariance matrix between x
and z can be written as

E






x

z




(
xT zT

)

 =



Rxx Rxz

Rzx Rzz


 ∈ R(N+1)M×(N+1)M ,

where

Rxz = E[xzT ] = RxxP
T = Rxx

(
PT

1 · · · PT
N

)

is the M ×NM cross-covariance matrix between x and z, Rzx = RT
xz, and

Rzz = E[zzT ] = PRxxP
T + σ2

nI =




P1

...

PN




Rxx

(
PT

1 · · · PT
N

)
+ σ2

nI (2)

is the NM ×NM composite measurement covariance matrix.

We wish to minimize the MSE in linearly estimating x from z. The linear MSE
minimizer is known to be the Wiener filter or the LMMSE filter F = RxzR

−1
zz ,

which estimates x by x̂ = Fz, e.g., see [7]. The error covariance matrix Ree in

6



this estimation is given by

Ree = E[eeT ] = E
[
(x− Fz)(x− Fz)T

]

= Rxx −RxzR
−1
zz Rzx

= Rxx −RxxP
T (PRxxP

T + σ2
nI)

−1PRxx

=
(
R−1

xx +
1

σ2
n

PTP
)−1

,

where the last equality follows from the matrix inversion lemma (Sherman-
Morrison-Woodbury formula) [15, p.50].

The MSE is obtained by taking the trace of Ree. Let φi, i = 1, 2, . . . , M be
the ith eigenvalue of R−1

xx + (1/σ2
n)PTP and assume φ1 ≥ φ2 ≥ · · · ≥ φM > 0.

Then, the MSE is

MSE = tr[Ree] =
M∑

i=1

1

φi

.

Let 0 < λ1 ≤ λ2 ≤ · · · ≤ λM be the eigenvalues of Rxx. Then, from (1), it
follows that

1

λi

+
A

σ2
n

≤ φi ≤ 1

λi

+
B

σ2
n

or alternatively
1

1
λi

+ B
σ2

n

≤ 1

φi

≤ 1
1
λi

+ A
σ2

n

.

Therefore, we have the following lower and upper bounds for the MSE:

M∑

i=1

1
1
λi

+ B
σ2

n

≤
(
MSE =

M∑

i=1

1

φi

)
≤

M∑

i=1

1
1
λi

+ A
σ2

n

.

The lower bound is achieved when the fusion frame is tight. That is, when
A = B and

N∑

`=1

P` = AI. (3)

Taking the trace from both sides of (3) yields the bound A as

A =
1

M

N∑

`=1

m`. (4)

Thus, the MSE is given by

MSE =
M∑

i=1

σ2
nλi

σ2
n + λi

M

N∑
`=1

m`

. (5)
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Remark 2.1 When Rxx = σ2
xI, the MSE expression in (5) reduces to

MSE =
Mσ2

nσ2
x

σ2
n + σ2

x

M

N∑
`=1

m`

. (6)

3 Robustness to Subspace Erasures

We now consider the case where subspace erasures occur, that is when mea-
surement vectors from one or more subspaces are lost or discarded. We wish
to determine the MSE when the LMMSE filter F, which is calculated based
on the full composite covariance matrix in (2), is applied to the composite
measurement vector with erasures. We do not wish to recalculate the LMMSE
filter every time an erasure occurs. Recalculating the LMMSE filter requires
calculating the inverse of the composite covariance matrix of the remaining
measurement vectors, which is intractable from a computational standpoint.

In this section, we show how the subspaces in the fusion frame {Wi}N
i=1 must

be selected so that the MSE is minimized under subspace erasures. In our
analysis we assume that {Wi}N

i=1 is tight with bound A given by (4). For the
sake of simplicity, we limit our analysis to the case where the signal covariance
matrix is Rxx = σ2

xI. The case where Rxx is a general positive definite matrix
is more involved and is outside the scope of this paper.

Let S ⊂ {1, 2, . . . , N} be the set of indices corresponding to the erased sub-
spaces. Then, the composite measurement vector with erasures z̃ ∈ RNM may
be expressed as

z̃ = (I− E)z,

where E is an NM × NM block-diagonal erasure matrix whose ith M ×M
diagonal block is a zero matrix, if i /∈ S, or an identity matrix, if i ∈ S. In other
words, in z̃ the measurement vectors associated with the erased subspaces are
set to zero.

The estimate of x is given by x̃ = Fz̃, where F = RxzR
−1
zz is the (no-erasure)

LMMSE filter. The error covariance matrix R̃ee for this estimate is given by

R̃ee = E
[
(x− x̃)(x− x̃)T

]

= E
[
(x− F(I− E)z)(x− F(I− E)z)T

]

= Rxx −RxzR
−1
zz (I− E)Rzx −Rxz(I− E)TR−1

zz Rzx

+ RxzR
−1
zz (I− E)Rzz(I− E)TR−1

zz Rzx.

We can rewrite R̃ee as
R̃ee = Ree + Ree,
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where Ree = Rxx−RxzR
−1
zz Rzx is the no-erasure error covariance matrix, and

Ree = RxzR
−1
zz ERzzE

TR−1
zz Rzx

is the extra covariance matrix due to erasures. The MSE is given by

MSE = tr[Ree] = MSE0 + MSE,

where MSE0 = tr[Ree] is the no-erasure MSE in (6) and

MSE = tr[Ree]

= tr[RxzR
−1
zz ERzzE

TR−1
zz Rzx]

= tr[σ4
xP

T (σ2
xPPT + σ2

nI)
−1E(σ2

xPPT + σ2
nI)E

T (σ2
xPPT + σ2

nI)
−1P]

is the extra MSE due to erasures.

From the matrix inversion lemma [15, p.50], we have

(σ2
xPPT + σ2

nI)
−1 =

1

σ2
n

I− 1

σ4
n

P(
1

σ2
n

PTP +
1

σ2
x

I)−1PT

=
1

σ2
n

I− 1

σ2
n

σ2
x

Aσ2
x + σ2

n

PPT , (7)

where the second equality follows by using PTP =
∑N

i=1 Pi = AI.

Using (7), we can simplify the expression for MSE to

MSE = tr[Ree] = α2tr[PTE(σ2
xPPT + σ2

nI)EP]

= α2tr


σ2

x


∑

i∈S
Pi




2

+ σ2
n


∑

i∈S
Pi





 , (8)

where α = σ2
x/(σ

2
xA + σ2

n). The last equality in (8) follows by considering the
action of the erasure matrix E.

We now show how the subspaces in the fusion frame {Wi}N
i=1 must be con-

structed so that the total MSE is minimized for a given number of erasures.
We consider three scenarios: one subspace erasure, two subspace erasures, and
more than two subspace erasures.
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3.1 One Subspace Erasure

If only one of the subspaces, say the ith subspace, is erased, then MSE is
given by

MSE = MSE0 + MSE

= MSE0 + tr[α2(σ2
x + σ2

n)Pi]

=
Mσ2

xσ
2
n

σ2
n + σ2

x

M

N∑
`=1

m`

+
σ4

x(σ
2
x + σ2

n)
(
σ2

n + σ2
x

M

N∑
`=1

m`

)2 mi, (9)

where mi = tr[Pi] is the dimension of the ith subspace Wi.

The erasure can occur for any of the subspaces. Thus, we have to choose
mi = m for all i = 1, . . . , N so that any one-erasure results in the same
amount of performance degradation. This reduces the MSE expression (9) to

MSE =
Mσ2

xσ
2
n

(Nmσ2
x/M + σ2

n)
+

σ4
x(σ

2
x + σ2

n)m

(Nmσ2
x/M + σ2

n)2 .

As a function of m, MSE = MSE(m) has a maximum at m = m̃, where

m̃ =
M

N

(N − 1)σ4
n − σ2

xσ
2
n

((N + 1)σ2
n + σ2

x)(1− 2σ2
x)

.

The MSE is monotonically increasing for m < m̃ and monotonically decreas-
ing for m > m̃. The smallest value m can take under the constraint that
the set of m-dimensional subspace {Wi}M

i=1 remains a tight fusion frame is
mmin = dM/Ne, where d·e denotes integer ceiling. We take the largest value
m can take to be mmax ≤ M . The maximum allowable dimension mmax is
determined by practical considerations. In the distributed sensing problem it
is the maximum number of sensors we can deploy in a cluster. In the paral-
lel processing problem it is determined by the maximum computational load
that the local processors can handle, and in the packet encoding problem it
corresponds to the maximum amount of new information (minimum amount
of redundancy) we can include in a packet, while achieving an error correction
goal.

We have the following theorem.

Theorem 3.1 The MSE due to the erasure of one subspace is minimized when
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all subspaces in {Wi}N
i=1 have equal dimension m = m∗, where

m∗ =





mmin, if mmax ≤ m̃ or

if mmin ≤ m̃ ≤ mmax and MSE(mmin) ≤ MSE(mmax),

mmax, otherwise.

3.2 Two Subspace Erasures

When two subspaces, say the ith subspace and the jth subspace, are erased
or discarded, the total MSE is given by

MSE = MSE0 + MSE

= MSE0 + α2tr[σ2
x(Pi + Pj)

2 + σ2
n(Pi + Pj)].

We take the dimension of all subspaces to be equal to a given m in order to fix
the performance against one subspace erasures. This fixes MSE0 and reduces
the minimization of MSE to minimizing the extra MSE, which is given by

MSE = 2α2(σ2
x + σ2

n)m + 2α2σ2
xtr[PiPj].

To minimize MSE we have to choose Wi and Wj, so that tr[PiPj] is mini-
mized. Since Pi and Pj are orthogonal projection matrices onto Wi and Wj,
the eigenvalues of PiPj are squares of the cosines of the principal angles θ`(i, j),
` = 1, . . . , M between Wi and Wj. Therefore,

tr[PiPj] =
M∑

`=1

cos2 θ`(i, j) = M − d2
c(i, j), (10)

where

dc(i, j) =

(
M∑

`=1

sin2 θ`(i, j)

)1/2

is known as the chordal distance [14] between Wi and Wj.

Thus, we need to maximize the chordal distance dc(i, j). Since this has to be
done for any two subspace erasures, i.e., for any pair (i, j), i 6= j, we have to
construct the subspaces {Wi}N

i=1 so that any such pair has maximum chordal
distance.

In Section 4, we will prove that the subspaces in a fusion frame consisting
of equi-dimensional and equi-distance (equi-chordal distance) subspaces have
maximal chordal distance if and only if the fusion frame is tight. We call
such a fusion frame an equi-distance tight fusion frame and the subspaces
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corresponding to it maximal equi-distance subspaces. We note that maximal
equi-distance does not mean that the principal angles between any pair of
subspaces must be equal. Therefore, this is a more relaxed requirement than
the equi-isoclinic condition in [6].

We have the following theorem.

Theorem 3.2 The MSE due to two subspace erasures is minimized when the
m-dimensional subspaces in the tight fusion frame {Wi}N

i=1 are maximal equi-
distance subspaces.

We defer the construction of maximal equi-distance subspaces to Section 4,
where we explain the connection between this construction and the problem
of optimal packing of N planes in a Grassmannian space [16,14].

3.3 More Than Two Subspace Erasures

We now consider the case where more than two subspaces are erased or dis-
carded. Let the subspaces {Wi}N

i=1 have equal dimension m ≥ dM/Ne and
equal pairwise chordal distance dc, so as to fix the performance against one-
and two-erasures. Then, MSE can be written as

MSE = α2tr


σ2

x


∑

i∈S
Pi




2

+ σ2
n


∑

i∈S
Pi







= α2(σ2
x + σ2

n)
∑

i∈S
tr[Pi] + α2σ2

x

∑

i∈S

∑

j∈S,j 6=i

tr[PiPj]

= α2(σ2
x + σ2

n)|S|m + α2σ2
x|S|(|S| − 1)(M − d2

c).

Similar to the two-erasure case, MSE is minimized when d2
c takes its maximum

value. Thus, we have the following theorem.

Theorem 3.3 The MSE due to k erasures, 3 ≤ k < N is minimized when
the m-dimensional subspaces in the tight fusion frame {Wi}N

i=1 are maximal
equi-distance subspaces.

4 Connections between Tight Fusion Frames and Optimal Packings

In this section, we show that tight fusion frames that consist of equi-dimen-
sional and equi-distance subspaces are closely related to optimal packings of
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subspaces. We start by reviewing the classical packing problem for subspaces
[16,14].

Classical Packing Problem. For given m,M, N , find a set of m-dimensional
subspaces {Wi}N

i=1 in RM such that mini6=j dc(i, j) is as large as possible. In
this case we call {Wi}N

i=1 an optimal packing.

This problem was reformulated by Conway et al. in [14] by describing m-
dimensional subspaces in RM as points on a sphere of radius 1

2
(M−1)(M +2).

This usually provides a lower-dimensional representation than the Plücker
embedding. This idea was then used to prove the optimality of many new
packings by employing results from sphere packing theory such as Rankin
bounds for spherical codes. In what follows, we briefly describe the embed-
ding of the Grassmannian manifold G(m, M) of m-dimensional subspaces of
RM , as it was described in [14]. The basic idea is to identify an m-dimensional
subspace W with the traceless part of the projection matrix Q1 associated
with W , i.e., with Q1 = Q1 − m

M
I. This yields an isometric embedding of

G(m,M) into the sphere of radius
√

m(M−m)
M

in R 1
2
(M−1)(M+2), where the dis-

tance measure is the chordal distance between two projections. The chordal
distance dc(Q1,Q2) between two projection matrices Q1 and Q2 is given by
dc(Q1,Q2) = 1√

2
‖Q1−Q2‖2, and is equal to 1√

2
times the straight-line distance

between the projection matrices. This is the reason that dc(Q1,Q2) is called
chordal distance. Conway et al. [14] deduced from this particular embedding
the following result.

Theorem 4.1 [14] Each packing of m-dimensional subspaces {Wi}N
i=1 in RM

satisfies

d2
c(i, j) ≤

m(M −m)

M

N

N − 1
, i, j = 1, . . . , N.

The upper bound is referred to as the simplex bound. The above theorem
implies that if the pairwise chordal distances between a set of m-dimensional
subspaces of RM meet the simplex bound those subspaces form an optimal
packing, as the minimum of chordal distances cannot grow any further.

We now establish a connection between tight fusion frames and optimal pack-
ings.

4.1 Equi-Dimensional Subspaces

Consider a tight fusion frame {Wi}N
i=1, with bound A, consisting of N m-

dimensional subspaces that do not necessarily have equal pairwise chordal

13



distances. Since {Wi}N
i=1 is tight, we have

AI =
N∑

i=1

Pi. (11)

On the one hand, we can apply the trace and employ the fact that tr[Pi] = m
for each i, to obtain

AM = Nm. (12)

On the other hand, we can multiply (11) from left by Pj to get

(A− 1)Pj =
N∑

i=1,i6=j

PjPi, j = 1, . . . , N.

We can then take the trace, employ the fact that tr[Pj] = m for each j, and
use (10), to obtain

(A− 1) m =
N∑

i=1,i6=j

tr[PjPi] = (N − 1)m−
N∑

i=1,i 6=j

d2
c(i, j). (13)

Equations (12) and (13) together prove the following result concerning the
value of the fusion frame bound.

Proposition 4.2 A tight fusion frame {Wi}N
i=1 with bound A and m-dimen-

sional subspaces satisfies

A =
Nm

M
= N −

N∑

i=1,i6=j

d2
c(i, j)

m
, j = 1, . . . , N.

4.2 Equi-Dimensional and Equi-Distance Subspaces

We now turn our attention to tight fusion frames {Wi}N
i=1 consisting of equi-

dimensional and equi-distance subspaces, where the common dimension is m
and the common chordal distance is dc. From Proposition 4.2, it follows that

Nm

M
= N − (N − 1)

d2
c

m
.

Thus, d2
c is given by

d2
c =

m(M −m)

M

N

N − 1
, (14)

which shows that d2
c precisely equals the simplex bound.

Next we will study whether this condition is sufficient. That is, we wish to
know whether a fusion frame consisting of equi-dimensional subspaces whose
pairwise chordal distances are equal to the simplex bound is necessarily tight.
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Consider a fusion frame {Wi}N
i=1, consisting of N m-dimensional subspaces

with pairwise chordal distances dc equal to the simplex bound. Let π1, . . . , πM

be the eigenvalues of PTP =
∑N

i=1 Pi. Since {Wi}N
i=1 is a fusion frame for RM ,

we have π` > 0, ` = 1, 2, . . . , M , and the sum of π`’s is given by

M∑

`=1

π` = tr[PTP] =
N∑

i=1

tr[Pi] = Nm. (15)

The sum of π2
i ’s can be written as

M∑

`=1

π2
` = tr[PTPPTP]

=
N∑

i=1

N∑

j=1

tr[PiPj]

=
N∑

i=1

N∑

j=1,j 6=i

tr[PiPj] +
N∑

i=1

tr[Pi]

= N(N − 1)(m− d2
c) + Nm,

where the last equality follows from (10). Inserting the value of the simplex
bound, we obtain

M∑

`=1

π2
` =

m2N2

M
. (16)

To conclude that (15) together with (16) implies tightness of the fusion frame,
we consider the problem of minimizing the function

∑M
`=1 π2

` under the con-
straint that π1, . . . , πM is a sequence of nonnegative values which sum up to∑M

`=1 π` = Nm. Using the method of Lagrange multipliers, we see that the
minimum is achieved when all π`’s are equal to Nm/M . This implies that
(15) and (16) can be simultaneously satisfied only when

π1 = · · · = πM =
Nm

M
.

From this relation, it follows that {Wi}N
i=1 is a tight fusion frame. Therefore,

we have the following theorem.

Theorem 4.3 Let {Wi}N
i=1 be a fusion frame of m-dimensional subspaces with

equal pairwise chordal distances dc. Then the fusion frame is tight if and only
if dc equals the simplex bound.

An immediate consequence of Theorem 4.3 is as follows.

Corollary 4.4 Equi-distance tight fusion frames are optimal Grassmannian
packings.
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5 Construction of Equi-Distance Tight Fusion Frames

In this section we present a few examples to illustrate the richness, but also
the difficulty of constructing fusion frames with special properties such as
tightness, equi-dimension, and equi-distance. The optimal packing of N planes
in the Grassmannian space G(m,M) is a difficult mathematical problem, the
solution to which is known only for special values of N ,m, and M . In fact, even
optimal packing of lines (m = 1) or equivalently constructing equi-angular
lines is a deep mathematical problem. The reader is referred to [12] for a review
of problems which are equivalent to the construction of equi-angular lines.
For the construction of optimal packings with higher-dimensional subspaces
we refer the reader to [14,16,17]. We would also like to draw the reader’s
attention to N. J. Sloane’s webpage [18], which includes many examples of
Grassmannian packings.

Example 5.1 As our first example for construction of equi-distance tight
fusion frames, we use a result obtained by Calderbank et al. [17] for construc-
tion of optimal packings. The procedure is as follows. Choose p to be a prime
which is either 3 or congruent to −1 modulo 8. Then there exists an explicit
construction which produces a tight fusion frame {Wi}p(p+1)/2

i=1 in Rp with

mi =
p− 1

2
and d2

c =
(p + 1)2

4(p + 2)
for all i, j = 1, . . . ,

p(p + 1)

2
,

where mi denotes the dimension of the ith subspace. From Proposition 4.2 it
follows that the bound of this fusion frame equals

A =
p2 − 1

4
.

As a particular example of this construction we briefly outline the equi-
distance tight fusion frame we obtain for p = 7. For this, let Q = {qi}3

i=1 =
{1, 2, 4} denote the nonzero quadratic residues modulo 7, and R = {3, 5, 6}
the nonresidues. Further, let H be a 4× 4 Hadamard matrix, e.g.,

H =




1 1 1 1

−1 1 −1 1

−1 −1 1 1

1 −1 −1 1




.

Finally, we denote the coordinate vectors in R7 by ei, 0 ≤ i ≤ 6, and set
C =

√
2 and k = 3. Then we define 4 three-dimensional planes Lj, 1 ≤ j ≤ 4
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to be spanned by the vectors

eqi
+ CHijekqi

, 1 ≤ i ≤ 3.

For each Lj, we obtain 6 further planes by applying the cyclic permutation
of coordinates ei 7→ e(i+1) mod 7. This yields 28 three-dimensional planes in
R7, which form a tight fusion frame with bound 12. Moreover, the chordal
distance between each pair of them equals d2

c = 16
9
.

This construction is based on employing properties of special groups, in this
case the Clifford group. We remark that this is closely related with the con-
struction of error-correcting codes.

Example 5.2 This example considers the construction of an equi-distance
tight fusion frame for a dimension not covered by Example 5.1 by employing
the theory of Eisenstein integers. More precisely, the subspaces will be gener-
ated by the minimal elements of a special lattice. For this, we let E = {a+ωb :

a, b ∈ Z} denote the Eisenstein integers, where ω = −1+i
√

3
2

is a complex root
of unity. The three-dimensional complex lattice E∗

6 over E is then defined by
its generator matrix 



√−3 0 0

1 −1 0

1 0 −1




.

It can be shown that the minimal norm of a non-zero element in E∗
6 is 4

3
. Out

of the set of minimal elements, we now select the following nine:

(1,−1, 0), (1, 0,−1), (0, 1,−1), (ω,−1, 0),

(0, ω,−1), (−1, 0, ω), (ω, 0,−1), (−1, ω, 0), (0,−1, ω).

Multiplied by the 6th roots of unity, this yield 9 planes in C3. Using the
canonical mapping of C3 onto R6, e.g., (ω,−1, 0) 7→ (−1

2
,
√

3
2

,−1, 0, 0, 0), we
obtain 9 two-dimensional planes in R6.

In this example all principle angles between each pair of planes are in fact
equal to π

3
. In particular, the chordal distance is d2

c = 3
2
, which can easily be

seen to satisfy the simplex bound (cf. (14)). By Theorem 4.3 it now follows
that the fusion frame consisting of these planes is tight, and Proposition 4.2
shows that the frame bound equals 3.

Example 5.3 The third example explores the construction of fusion frames
in R8 by employing a similar strategy as in Example 5.2. However, with this
example we wish to illustrate the need to be particularly meticulous when
generating a fusion frame from minimal vectors of a particular lattice. In fact
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by using a similar approach, we will generate a tight fusion frame with equi-
dimensional subspaces, but not equi-distance subspaces, although with a very
distinct set of chordal distances.

For our analysis, we choose the lattice

E8 =
{
(x1, . . . , x8) :

(
xi ∈ Z ∀ 1 ≤ i ≤ 8 or xi ∈ Z+ 1

2
∀ 1 ≤ i ≤ 8

)

and
∑8

i=1xi ∈ 2Z
}

,

which is again a lattice over the Eisenstein integers E = {a + ωb : a, b ∈ Z},
ω = −1+i

√
3

2
. Before studying the minimal vectors in this lattice, we consider

the complex root of unity ω = −1+i
√

3
2

which was employed in the construction
of E . We first express ω in quaternions, which gives ω = 1

2
(−1 + i + j + k).

Next we define a matrix H by choosing as row vectors the coefficients of ω,
iω, jω, and kω, i.e.,

H =
1

2




−1 1 1 1

−1 −1 −1 1

−1 1 −1 −1

−1 −1 1 −1




.

Form this, we build an 8× 8-matrix by setting

Ω =



H 0

0 H


 .

Realizing that this matrix satisfies Ω2 + Ω + I = 0, we can conclude that
scaling a vector v ∈ E8 by an Eisenstein integer a + ωb can be rewritten as

(a + ωb)v = av + bΩv.

Now we are equipped to generate subspaces by minimal vectors, whose norm
can be computed to equal 2. The lattice E8 has 240 minimal vectors, which
we assign to planes in the following way. We first consider the four minimal
vectors

(1,−1, 0, 0, 0, 0, 0, 0), (1, 0,−1, 0, 0, 0, 0, 0),

(1, 0, 0,−1, 0, 0, 0, 0), (0, 1,−1, 0, 0, 0, 0, 0)

and multiply each of them with

I, −I, Ω, −Ω, I + Ω, and − I−Ω. (17)

This procedure generates four sets of six minimal vectors, where each set
generates a two-dimensional plane in R8. Noticing that this construction only
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takes all minimal vectors which are of the form (x1, x2, x3, x4, 0, 0, 0, 0) into
account, we can clearly use the same idea to group all minimal vectors of
the form (0, 0, 0, 0, x5, x6, x7, x8). Summarizing, this construction provides us
with 8 two-dimensional planes in R8 which we denote by W1, . . . ,W8. Next
we consider minimal vectors (x1, . . . , x8), which have one coordinate out of
x1, x2, x3, x4 and one coordinate out of x5, x6, x7, x8 equal to −1 or 1, the
others being equal to zero. Again we multiply these vectors by the factors
given in (17). We can easily see that this procedure generates another 32
two-dimensional planes in R8, denoted by W9, . . . ,W40.

Although this construction seems similar to the one on Example 5.2, we found
it surprising to see that in fact {Wi}40

i=1 does constitute an equi-dimension tight
fusion frame, however the subspaces are not equi-distance. The fusion frame
bound can be derived from Proposition 4.2 and equals 10. Most interestingly,
the structure of the chordal distances is rather distinct. In fact, it can be
computed that the chordal distance between each pair is either d2

c = 2 –
which means that they are orthogonal – or d2

c = 4
3
.

6 Conclusions

We considered the linear estimation of a random vector from its noisy projec-
tions onto low-dimensional subspaces constituting a fusion frame. We proved
that – in the presence of white noise – the MSE in such an estimation is mini-
mal when the fusion frame is tight. We analyzed the effect of subspace erasures
on the performance of LMMSE estimators. We proved that maximum robust-
ness against one subspace erasures is achieved when the fusion frame is tight
and all subspaces have equal dimensions, where the optimal dimension depends
on the SNR. We also proved that equi-distance tight fusion frames are maxi-
mally robust against two and more than two subspace erasures. In addition we
proved that equi-distance tight fusion frames are in fact optimal Grassman-
nian packings, and thereby showed that optimal Grassmannian packings are
fundamental for signal processing applications where low-dimensional projec-
tions are used for robust dimension reduction. We presented a few examples
for the construction of equi-distance tight fusion frames and illustrated the
interesting and sometimes challenging nature of such constructions.
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